论文标题

检测,歧义,重新排列:自动回归实体链接为多任务问题

Detection, Disambiguation, Re-ranking: Autoregressive Entity Linking as a Multi-Task Problem

论文作者

Mrini, Khalil, Nie, Shaoliang, Gu, Jiatao, Wang, Sinong, Sanjabi, Maziar, Firooz, Hamed

论文摘要

我们提出了一个自动回归实体链接模型,该模型通过两个辅助任务进行了训练,并学会了在推理时重新排名生成的样本。我们提出的新颖性解决了文献中的两个弱点。首先,最近的一种方法建议学习提及检测,然后是实体候选人选择,但依赖于预定义的候选人集。我们使用编码器解码器自动回归实体链接以绕过这一需求,并建议将提及检测作为辅助任务进行训练。其次,以前的工作表明,重新排列可以帮助纠正预测错误。我们添加了一个新的辅助任务,匹配预测,以学习重新排序。没有使用知识库或候选集合,我们的模型将在实体链接的两个基准数据集中设置新的最新技术:生物医学领域中的cometa,而新闻领域中的Aida-Conll。我们通过消融研究表明,两个辅助任务中的每一个都会提高性能,而重新排列是增加的重要因素。最后,我们的低资源实验结果表明,在主要任务上的绩效受益于辅助任务所学的知识,而不仅仅是其他培训数据。

We propose an autoregressive entity linking model, that is trained with two auxiliary tasks, and learns to re-rank generated samples at inference time. Our proposed novelties address two weaknesses in the literature. First, a recent method proposes to learn mention detection and then entity candidate selection, but relies on predefined sets of candidates. We use encoder-decoder autoregressive entity linking in order to bypass this need, and propose to train mention detection as an auxiliary task instead. Second, previous work suggests that re-ranking could help correct prediction errors. We add a new, auxiliary task, match prediction, to learn re-ranking. Without the use of a knowledge base or candidate sets, our model sets a new state of the art in two benchmark datasets of entity linking: COMETA in the biomedical domain, and AIDA-CoNLL in the news domain. We show through ablation studies that each of the two auxiliary tasks increases performance, and that re-ranking is an important factor to the increase. Finally, our low-resource experimental results suggest that performance on the main task benefits from the knowledge learned by the auxiliary tasks, and not just from the additional training data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源