论文标题
检测,歧义,重新排列:自动回归实体链接为多任务问题
Detection, Disambiguation, Re-ranking: Autoregressive Entity Linking as a Multi-Task Problem
论文作者
论文摘要
我们提出了一个自动回归实体链接模型,该模型通过两个辅助任务进行了训练,并学会了在推理时重新排名生成的样本。我们提出的新颖性解决了文献中的两个弱点。首先,最近的一种方法建议学习提及检测,然后是实体候选人选择,但依赖于预定义的候选人集。我们使用编码器解码器自动回归实体链接以绕过这一需求,并建议将提及检测作为辅助任务进行训练。其次,以前的工作表明,重新排列可以帮助纠正预测错误。我们添加了一个新的辅助任务,匹配预测,以学习重新排序。没有使用知识库或候选集合,我们的模型将在实体链接的两个基准数据集中设置新的最新技术:生物医学领域中的cometa,而新闻领域中的Aida-Conll。我们通过消融研究表明,两个辅助任务中的每一个都会提高性能,而重新排列是增加的重要因素。最后,我们的低资源实验结果表明,在主要任务上的绩效受益于辅助任务所学的知识,而不仅仅是其他培训数据。
We propose an autoregressive entity linking model, that is trained with two auxiliary tasks, and learns to re-rank generated samples at inference time. Our proposed novelties address two weaknesses in the literature. First, a recent method proposes to learn mention detection and then entity candidate selection, but relies on predefined sets of candidates. We use encoder-decoder autoregressive entity linking in order to bypass this need, and propose to train mention detection as an auxiliary task instead. Second, previous work suggests that re-ranking could help correct prediction errors. We add a new, auxiliary task, match prediction, to learn re-ranking. Without the use of a knowledge base or candidate sets, our model sets a new state of the art in two benchmark datasets of entity linking: COMETA in the biomedical domain, and AIDA-CoNLL in the news domain. We show through ablation studies that each of the two auxiliary tasks increases performance, and that re-ranking is an important factor to the increase. Finally, our low-resource experimental results suggest that performance on the main task benefits from the knowledge learned by the auxiliary tasks, and not just from the additional training data.