论文标题
利用反应感知的子结构进行返回分析
Leveraging Reaction-aware Substructures for Retrosynthesis Analysis
论文作者
论文摘要
逆合合成分析是许多重要行业中心的有机化学中的关键任务。以前,各种机器学习方法已通过将输出分子表示为字符串和自动加压解码的代币与生成模型,从而实现了这一任务的有希望的结果。自然语言处理中的文本生成或机器翻译模型经常被使用。从化学的角度来看,逐个代码的解码方法不是直观的,因为某些子结构相对稳定,并且在反应过程中保持不变。在本文中,我们提出了一个子结构级解码模型,其中子结构是反应感知的,并且可以通过完全数据驱动的方法自动提取。我们的方法比先前报道的模型取得了进步,我们发现,如果提高子结构提取的准确性,则可以进一步提高性能。与现有方法相比,我们方法提取的子结构可以为用户提供更好的决策见解。我们希望这项工作将对循环预测和其他相关主题的这个快速增长且高度的跨学科领域产生兴趣。
Retrosynthesis analysis is a critical task in organic chemistry central to many important industries. Previously, various machine learning approaches have achieved promising results on this task by representing output molecules as strings and autoregressively decoded token-by-token with generative models. Text generation or machine translation models in natural language processing were frequently utilized approaches. The token-by-token decoding approach is not intuitive from a chemistry perspective because some substructures are relatively stable and remain unchanged during reactions. In this paper, we propose a substructure-level decoding model, where the substructures are reaction-aware and can be automatically extracted with a fully data-driven approach. Our approach achieved improvement over previously reported models, and we find that the performance can be further boosted if the accuracy of substructure extraction is improved. The substructures extracted by our approach can provide users with better insights for decision-making compared to existing methods. We hope this work will generate interest in this fast growing and highly interdisciplinary area on retrosynthesis prediction and other related topics.