论文标题

带有深度部分卷积神经网络的Tropomi NO2柱的时空估计

Spatiotemporal Estimation of TROPOMI NO2 Column with Depthwise Partial Convolutional Neural Network

论文作者

Lops, Yannic, Ghahremanloo, Masoud, Pouyaei, Arman, Choi, Yunsoo, Jung, Jia, Mousavinezhad, Seyedali, Salman, Ahmed Khan, Hammond, Davyda

论文摘要

卫星来源的测量结果受云覆盖和表面反射率的负面影响。这些偏见必须被丢弃,并显着增加遥感图像中缺少数据的量。本文扩展了部分卷积神经网络(PCNN)的应用,以结合深度卷积层,将时间维度赋予插补过程。在插补过程中添加时间维度会在数据集中增加了连续存在的状态,该状态无法捕获空间插补。深度卷积过程使PCNN能够独立卷积每个通道的数据。深度学习系统经过社区多尺度空气质量模型模拟的对流层二氧化氮(TCDNO2)的对流层密度,以估算对流层监测仪器TCDNO2。深度PCNN模型的一致性指数为0.82,并且在数据的时间维度和没有时间尺寸的情况下超过了默认的PCNN模型,并且分别在一致性和相关性的指数中分别具有3-11%和8-15%的逆距离权重。该模型在对流层监测仪器对流层柱密度的重建NO2图像的重建中表现出了更大的一致性。该模型还证明了遥感图像的准确插图,其中95%的数据丢失了超过95%。 PCNN可以通过大量丢失数据区域进行遥感数据的准确插入,并将使未来的研究人员受益于数值模型,排放研究和空气污染的人类健康影响分析。

Satellite-derived measurements are negatively impacted by cloud cover and surface reflectivity. These biases must be discarded and significantly increase the amount of missing data within remote sensing images. This paper expands the application of a partial convolutional neural network (PCNN) to incorporate depthwise convolution layers, conferring temporal dimensionality to the imputation process. The addition of a temporal dimension to the imputation process adds a state of successive existence within the dataset which spatial imputation cannot capture. The depthwise convolution process enables the PCNN to independently convolve the data for each channel. The deep learning system is trained with the Community Multiscale Air Quality model-simulated tropospheric column density of Nitrogen Dioxide (TCDNO2) to impute TROPOspheric Monitoring Instrument TCDNO2. The depthwise PCNN model achieves an index of agreement of 0.82 and outperforms the default PCNN models, with and without temporal dimensionality of data, and conventional data imputation methods such as inverse distance weighting by 3-11% and 8-15% in the index of agreement and correlation, respectively. The model demonstrates more consistency in the reconstruction of TROPOspheric Monitoring Instrument tropospheric column density of NO2 images. The model has also demonstrated the accurate imputation of remote sensing images with over 95% of the data missing. PCNN enables the accurate imputation of remote sensing data with large regions of missing data and will benefit future researchers conducting data assimilation for numerical models, emission studies, and human health impact analyses from air pollution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源