论文标题
量子系统的二进制控制脉冲优化
Binary Control Pulse Optimization for Quantum Systems
论文作者
论文摘要
量子控制旨在将量子系统操纵特定的量子状态或所需操作。设计高准确和有效的控制步骤对于各种量子应用至关重要,包括能量最小化和电路汇编。在本文中,我们专注于离散的二进制量子控制问题,并应用不同的优化算法和技术来提高计算效率和解决方案质量。具体来说,我们开发了一个通用模型并以多种方式扩展它。我们引入了一个平方$ L_2 $ -PENALTY功能来处理其他侧面约束,例如最多允许一个控件处于活动状态。我们引入了总变化(TV)正常化程序,以减少控件中的开关数。我们修改了流行的梯度上升脉冲工程(葡萄)算法,开发了一种新的乘数交替方向方法(ADMM)算法,以求解惩罚模型的连续放松,然后应用圆形技术来获得二进制控制解决方案。我们提出了一种修改的信任区域,以进一步改善解决方案。我们的算法可以获得高质量的控制结果,如不同量子控制示例的数值研究所证明的那样。
Quantum control aims to manipulate quantum systems toward specific quantum states or desired operations. Designing highly accurate and effective control steps is vitally important to various quantum applications, including energy minimization and circuit compilation. In this paper we focus on discrete binary quantum control problems and apply different optimization algorithms and techniques to improve computational efficiency and solution quality. Specifically, we develop a generic model and extend it in several ways. We introduce a squared $L_2$-penalty function to handle additional side constraints, to model requirements such as allowing at most one control to be active. We introduce a total variation (TV) regularizer to reduce the number of switches in the control. We modify the popular gradient ascent pulse engineering (GRAPE) algorithm, develop a new alternating direction method of multipliers (ADMM) algorithm to solve the continuous relaxation of the penalized model, and then apply rounding techniques to obtain binary control solutions. We propose a modified trust-region method to further improve the solutions. Our algorithms can obtain high-quality control results, as demonstrated by numerical studies on diverse quantum control examples.