论文标题
较高的对角线类型
Higher Braidings of Diagonal Type
论文作者
论文摘要
赫肯伯格(Heckenberger)引入了对角类型的有限维尼科尔(Nichols)代数的Weyl groupoid。我们用较高的张量代替其编织的矩阵,并呈现一种构造,从而产生进一步的Weyltoxoids。阿贝里亚的辅助理论为存在与这种张量相关的较高编织的存在提供了证据。
Heckenberger introduced the Weyl groupoid of a finite-dimensional Nichols algebra of diagonal type. We replace the matrix of its braiding by a higher tensor and present a construction which yields further Weyl groupoids. Abelian cohomology theory gives evidence for the existence of a higher braiding associated to such a tensor.