论文标题

根系和克利福德代数:从病毒的对称到$ e_8 $&ade通信

Root systems & Clifford algebras: from symmetries of viruses to $E_8$ & ADE correspondences

论文作者

Dechant, Pierre-Philippe

论文摘要

在本文中,我们讨论了反射组和根系,特别是非结晶组,以及针对这两个概念的Clifford代数框架。对病毒capsid对称性的历史以及最新工作的综述激发了人们对二十面体根系$ H_3 $的关注。我们讨论了非晶体学组的仿射扩展的概念,并应用于富勒烯和病毒。病毒capsid中核酸的二十面体有序成分以及两者之间的相互作用使病毒组装过程揭示了对抗病毒疗法,药物递送和纳米技术的有趣应用。 Clifford代数框架非常自然,因为它精确地使用了该根系和反射组上下文中已经隐含的结构,即带有内部产品的向量空间。此外,它提供了一个独特的简单反射公式,群体转换的双重覆盖物以及对几何形状的更多洞察力,例如Coxeter平面的几何形状。这种方法使一系列的根系感应证明了,例如$ H_3 $的$ e_8 $的构造以及来自3D根系的非凡的4D根系。这使Arnold称为Trinities(三个例外情况)之间的各种连接。实际上,由于诱导构建包含其他案例,即两个无限案件。因此,它实际上产生了三组不同的数学概念之间的$ ade $对应关系,这些数学概念通常被认为是多面体,$ su(2)$(2)$和$ ade $ lie代数的子组。在这里,我们将它们视为三组根系系统,以统一的方式将它们连接起来。

In this paper we discuss reflection groups and root systems, in particular non-crystallographic ones, and a Clifford algebra framework for both these concepts. A review of historical as well as more recent work on viral capsid symmetries motivates the focus on the icosahedral root system $H_3$. We discuss a notion of affine extension for non-crystallographic groups with applications to fullerenes and viruses. The icosahedrally ordered component of the nucleic acid within the virus capsid and the interaction between the two have shed light on the viral assembly process with interesting applications to antiviral therapies, drug delivery and nanotechnology. The Clifford algebra framework is very natural, as it uses precisely the structure that is already implicit in this root system and reflection group context, i.e. a vector space with an inner product. In addition, it affords a uniquely simple reflection formula, a double cover of group transformations, and more insight into the geometry, e.g. the geometry of the Coxeter plane. This approach made possible a range of root system induction proofs, such as the constructions of $E_8$ from $H_3$ and the exceptional 4D root systems from 3D root systems. This makes explicit various connections between what Arnold called Trinities (sets of three exceptional cases). In fact this generalises further since the induction construction contains additional cases, namely two infinite families of cases. It therefore actually yields $ADE$ correspondences between three sets of different mathematical concepts that are usually thought of separately as polytopes, subgroups of $SU(2)$ and $ADE$ Lie algebras. Here we connect them explicitly and in a unified way by thinking of them as three different sets of root systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源