论文标题

线性有序的超图颜色

Linearly ordered colourings of hypergraphs

论文作者

Nakajima, Tamio-Vesa, Živný, Stanislav

论文摘要

线性订购的(lo)$ k $ - 颜色$ r $均匀的超图将整数从$ \ {1,\ ldots,k \} $分配给每个顶点,以便在每个边缘,在每个边缘,(多)颜色集具有独特的最大值。同等地,对于$ r = 3 $,如果在边缘中的两个顶点分配了相同的颜色,则为第三个顶点分配了较大的颜色(与经典非单色颜色相比,与其他颜色相反)。 Barto,Battistelli和Berg [Stacs'21]在承诺约束满意度问题(PCSPS)的背景下以$ 3 $均匀的超图(PCSP)研究了LO颜色。我们显示两个结果。 首先,给定一个3均匀的超图,可以承认$ 2 $颜色,可以在多项式时间中找到一个lo $​​ k $ - 颜色,$ k = o(\ sqrt [3] {n \ log \ log \ log \ log \ log n / \ log n / \ log n})$。 其次,考虑到承认$ 2 $颜色的$ r $均匀的超图,我们确定了NP硬度,可以找到每个恒定均匀性$ r \ geq k+2 $的lo $ k $颜色。实际上,我们确定了所有均匀性的多态性小兵$ r \ geq 3 $之间的关系,这揭示了$ r <k+2 $和$ r \ r \ geq k+2 $之间的关键区别,这可能是独立的利益。使用代数方法对PCSP的代数方法,我们实际上显示了一个更一般的结果,确立了NP硬度,以找到lo $ $ \ ell $ -lobourable $ r $ r $ r $ r $ r $ rubiform-sifterGraphs的颜色,价格为$ 2 \ leq \ ell \ ell \ ell \ ell \ ell \ leq k $和$ r \ geq k- \ geq k - \ ell + ell + 4 $。

A linearly ordered (LO) $k$-colouring of an $r$-uniform hypergraph assigns an integer from $\{1, \ldots, k \}$ to every vertex so that, in every edge, the (multi)set of colours has a unique maximum. Equivalently, for $r=3$, if two vertices in an edge are assigned the same colour, then the third vertex is assigned a larger colour (as opposed to a different colour, as in classic non-monochromatic colouring). Barto, Battistelli, and Berg [STACS'21] studied LO colourings on $3$-uniform hypergraphs in the context of promise constraint satisfaction problems (PCSPs). We show two results. First, given a 3-uniform hypergraph that admits an LO $2$-colouring, one can find in polynomial time an LO $k$-colouring with $k=O(\sqrt[3]{n \log \log n / \log n})$. Second, given an $r$-uniform hypergraph that admits an LO $2$-colouring, we establish NP-hardness of finding an LO $k$-colouring for every constant uniformity $r\geq k+2$. In fact, we determine relationships between polymorphism minions for all uniformities $r\geq 3$, which reveals a key difference between $r<k+2$ and $r\geq k+2$ and which may be of independent interest. Using the algebraic approach to PCSPs, we actually show a more general result establishing NP-hardness of finding an LO $k$-colouring for LO $\ell$-colourable $r$-uniform hypergraphs for $2 \leq \ell \leq k$ and $r \geq k - \ell + 4$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源