论文标题

格拉斯曼尼亚,国旗和舒伯特品种的符号条件

Symplectic conditions on Grassmannian, flag, and Schubert varieties

论文作者

Xu, Jiajun, Zhang, Guanglian

论文摘要

在本文中,对相应(A型)代数品种中的符号(C型)格拉曼尼亚/国旗/舒伯特品种的定义定义方程的描述作为线性多项式在PL $ \ ddot {u} $ cker坐标中,并且在类型中产生了类型的应用程序,将其作为线性多项式,并在此类型中产生类型的应用。从舒伯特(Schubert)型A型舒伯特(Schubert)品种获取舒伯特(Schubert)型的舒伯特(Schubert)种类所需的局部方程数量是计算的,并且在完整的交集方面给出了舒伯特(Schubert)类型C种类的进一步的几何特性。最后,讨论了舒伯特品种在非微调或cominuscule grassmannian中的平滑度,在同一类型的代数品种的研究中填补了差距。

In this paper, a description of the set-theoretical defining equations of symplectic (type C) Grassmannian/flag/Schubert varieties in corresponding (type A) algebraic varieties is given as linear polynomials in Pl$\ddot{u}$cker coordinates, and it is proved that such equations generate the defining ideal of variety of type C in those of type A. As applications of this result, the number of local equations required to obtain the Schubert variety of type C from the Schubert variety of type A is computed, and further geometric properties of the Schubert variety of type C are given in the aspect of complete intersections. Finally, the smoothness of Schubert variety in the non-minuscule or cominuscule Grassmannian of type C is discussed, filling gaps in the study of algebraic varieties of the same type.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源