论文标题
部分可观测时空混沌系统的无模型预测
Injectivity in second-gradient Nonlinear Elasticity
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We study injectivity for models of Nonlinear Elasticity that involve the second gradient. We assume that $Ω\subset\mathbb{R}^n$ is a domain, $f\in W^{2,q}(Ω,\mathbb{R}^n)$ satisfies $|J_f|^{-a}\in L^1$ and that $f$ equals a given homeomorphism on $\partial Ω$. Under suitable conditions on $q$ and $a$ we show that $f$ must be a homeomorphism. As a main new tool we find an optimal condition for $a$ and $q$ that imply that $\mathcal{H}^{n-1}(\{J_f=0\})=0$ and hence $J_f$ cannot change sign. We further specify in dependence of $q$ and $a$ the maximal Hausdorff dimension $d$ of the critical set $\{J_f=0\}$. The sharpness of our conditions for $d$ is demonstrated by constructing respective counterexamples.