论文标题

神经图匹配,以适用于电子文档比较的修改相似性

Neural Graph Matching for Modification Similarity Applied to Electronic Document Comparison

论文作者

Hsu, Po-Fang, Wei, Chiching

论文摘要

在本文中,我们提出了一种应用于文档比较的新型神经图匹配方法。文件比较是法律和金融行业中的常见任务。在某些情况下,最重要的差异可能是单词,句子,从句或段落的添加或遗漏。但是,这是一项具有挑战性的任务,而无需记录或追踪整个编辑过程。在许多时间不确定性下,我们探讨了我们的方法的潜力,以验证准确的比较,以确保哪些元素块与他人有关系。一开始,我们应用文档布局分析,将传统和现代技术结合在一起,以适当的各种类型的块分段布局。然后,我们将此问题转换为布局图与文本意识匹配的问题。关于图形匹配,这是一个广泛的应用程序的长期研究。但是,与以前关注的视觉图像或结构布局的作品不同,我们还将文本功能带入了我们的模型以适应该域。具体而言,基于电子文档,我们介绍了一个编码器来处理PDF的视觉演示解码。此外,由于修改可能会导致修改文档和块之间文档布局分析的不一致性,因此可以合并并拆分块,因此在我们的图形神经方法中采用了sindhorn差异,该方法试图通过多对多的块匹配来克服这两个问题。我们在我们的真实数据集收集的两类布局上进行了两类布局,法律协议和科学文章。

In this paper, we present a novel neural graph matching approach applied to document comparison. Document comparison is a common task in the legal and financial industries. In some cases, the most important differences may be the addition or omission of words, sentences, clauses, or paragraphs. However, it is a challenging task without recording or tracing whole edited process. Under many temporal uncertainties, we explore the potentiality of our approach to proximate the accurate comparison to make sure which element blocks have a relation of edition with others. In beginning, we apply a document layout analysis that combining traditional and modern technics to segment layout in blocks of various types appropriately. Then we transform this issue to a problem of layout graph matching with textual awareness. About graph matching, it is a long-studied problem with a broad range of applications. However, different from previous works focusing on visual images or structural layout, we also bring textual features into our model for adapting this domain. Specifically, based on the electronic document, we introduce an encoder to deal with the visual presentation decoding from PDF. Additionally, because the modifications can cause the inconsistency of document layout analysis between modified documents and the blocks can be merged and split, Sinkhorn divergence is adopted in our graph neural approach, which tries to overcome both these issues with many-to-many block matching. We demonstrate this on two categories of layouts, as follows., legal agreement and scientific articles, collected from our real-case datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源