论文标题
$ k3 $表面的VAFA式不变的确切公式和Turán的不平等现象
Exact formulae and Turán inequalities for Vafa-Witten invariants of $K3$ surfaces
论文作者
论文摘要
我们考虑了$ k3 $表面的三个不同家庭的瓦法式不变式。在每种情况下,编码VAFA - 字形不变的分区函数都是由扭曲的Dedekind $η$ functions的组合给出的。通过利用这些$η$ functions的已知属性,我们获得了每个不变性的精确公式,并证明它们渐近满足所有高阶Turán不平等。
We consider three different families of Vafa-Witten invariants of $K3$ surfaces. In each case, the partition function that encodes the Vafa-Witten invariants is given by combinations of twisted Dedekind $η$-functions. By utilising known properties of these $η$-functions, we obtain exact formulae for each of the invariants and prove that they asymptotically satisfy all higher-order Turán inequalities.