论文标题
基塔耶旋转模型变分量子模拟的费米子方法
Fermionic approach to variational quantum simulation of Kitaev spin models
论文作者
论文摘要
我们使用各种量子本素(VQE)来模拟具有或没有可集成性破坏扰动的Kitaev自旋模型,特别是集中在蜂窝和方形胶状晶格上。这些模型以通过映射到自由费米子在某个参数方面的解决方案而闻名。我们使用经典模拟来探索一种新型的变异ansatz,它利用了这种费米子表示,并且能够在可解决的极限下表达确切的基态。我们还证明,与其他VQE方法相比,可以将此Ansatz扩展到该限制之外,以提供出色的准确性。在某些情况下,这种费米子表示是有利的,因为它减少了执行仿真所需的量子数的两个倍数。我们还评论了结果对量子计算机上的非亚洲人的含义。
We use the variational quantum eigensolver (VQE) to simulate Kitaev spin models with and without integrability breaking perturbations, focusing in particular on the honeycomb and square-octagon lattices. These models are well known for being exactly solvable in a certain parameter regime via a mapping to free fermions. We use classical simulations to explore a novel variational ansatz that takes advantage of this fermionic representation and is capable of expressing the exact ground state in the solvable limit. We also demonstrate that this ansatz can be extended beyond this limit to provide excellent accuracy when compared to other VQE approaches. In certain cases, this fermionic representation is advantageous because it reduces by a factor of two the number of qubits required to perform the simulation. We also comment on the implications of our results for simulating non-Abelian anyons on quantum computers.