论文标题
人与色彩绩效的客观评估
Human vs Objective Evaluation of Colourisation Performance
论文作者
论文摘要
灰色尺度图像的自动色彩是从灰色尺度提前创建全彩色图像的过程。这是一个不适的问题,因为给定的灰色尺度有许多合理的色彩。当前的自动彩色中的SOTA涉及图像到图像类型的深卷积神经网络,并具有生成的对抗网络,显示出最大的前景。色化的最终目标是产生看起来对人类观众合理的完整图像,但人类评估是昂贵且耗时的。这项工作评估了普遍使用的客观措施与人类意见相关。我们还试图确定什么方面对人类意见具有最大的影响。对于来自BSD数据集中的20张图像中的每张图像,我们创建了由本地和全球变化组成的65个重新定义。然后,使用亚马逊机械土耳其人将意见分数人群提出来,并与图像一起形成了一个可扩展的数据集,称为人类评估的色彩数据集(HECD)。虽然我们发现人开放分数与少量客观度量之间具有统计学意义的相关性,但相关性的强度很低。也有证据表明,人类观察者对天然物体的不正确色调最不宽容。
Automatic colourisation of grey-scale images is the process of creating a full-colour image from the grey-scale prior. It is an ill-posed problem, as there are many plausible colourisations for a given grey-scale prior. The current SOTA in auto-colourisation involves image-to-image type Deep Convolutional Neural Networks with Generative Adversarial Networks showing the greatest promise. The end goal of colourisation is to produce full colour images that appear plausible to the human viewer, but human assessment is costly and time consuming. This work assesses how well commonly used objective measures correlate with human opinion. We also attempt to determine what facets of colourisation have the most significant effect on human opinion. For each of 20 images from the BSD dataset, we create 65 recolourisations made up of local and global changes. Opinion scores are then crowd sourced using the Amazon Mechanical Turk and together with the images this forms an extensible dataset called the Human Evaluated Colourisation Dataset (HECD). While we find statistically significant correlations between human-opinion scores and a small number of objective measures, the strength of the correlations is low. There is also evidence that human observers are most intolerant to an incorrect hue of naturally occurring objects.