论文标题
在Noetherian方案的派生类别上紧凑的张量T结构
Compactly generated tensor t-structures on the derived category of a Noetherian scheme
论文作者
论文摘要
我们引入了t结构的张量兼容条件。对于任何Noetherian方案$ X $,我们证明Thomason子集的过滤集与$ x $的派生类别上紧凑的张量兼容T结构的过道集之间存在一对一的对应关系。这概括了较早的紧凑型T结构的分类,以换向方案。 HRBEK和NAKAMURA重新制定了著名的T结构望远镜猜想。作为我们的主要定理的应用,我们证明了猜想的张量版本对于分离的Noetherian方案是正确的。
We introduce a tensor compatibility condition for t-structures. For any Noetherian scheme $X$, we prove that there is a one-to-one correspondence between the set of filtrations of Thomason subsets and the set of aisles of compactly generated tensor compatible t-structures on the derived category of $X$. This generalizes the earlier classification of compactly generated t-structures for commutative rings to schemes. Hrbek and Nakamura have reformulated the famous telescope conjecture for t-structures. As an application of our main theorem, we prove that a tensor version of the conjecture is true for separated Noetherian schemes.