论文标题

Fomin-Kirillov代数的Hochschild共同学上的Gerstenhaber结构

Gerstenhaber structure on Hochschild cohomology of the Fomin-Kirillov algebra on 3 generators

论文作者

Herscovich, Estanislao, Li, Ziling

论文摘要

本文的目的是计算Fomin-Kirillov代数的Hochschild共同体的Gerstenhaber括号,这是在三个发电机上的特征领域,不同于$ 2 $和3美元。这部分是基于一种一般方法,我们介绍以轻松计算$ \ permatorName {hh}^{0} $的元素之间的gerstenhaber括号与$ \ operatotorname {hh}^{hh}^{n}(n}(n}(n}(a)$ n \ in \ mathbb in \ mathbb in \ n n n} by su s su su su su s su su {0计算$ \ operatorName {hh}^{1}(a)元素之间的gerstenhaber括号,以及$ \ operatorAtorName {hh}^{n}^{n}(a)$的$ n \ in \ in \ mathbb {n} _ {0} $,以及以前的comptute conconte conconter conconte re conconte conconte conconte consement。我们还表明,$ \ operatorname {hh}^{\ bullet}(a)$的Gerstenhaber支架不会由任何Batalin-Vilkovisky Generator诱导。

The goal of this article is to compute the Gerstenhaber bracket of the Hochschild cohomology of the Fomin-Kirillov algebra on three generators over a field of characteristic different from $2$ and $3$. This is in part based on a general method we introduce to easily compute the Gerstenhaber bracket between elements of $\operatorname{HH}^{0}(A)$ and elements of $\operatorname{HH}^{n}(A)$ for $n \in \mathbb{N}_{0}$, the method by M. Suárez-Álvarez to calculate the Gerstenhaber bracket between elements of $\operatorname{HH}^{1}(A)$ and elements of $\operatorname{HH}^{n}(A)$ for any $n \in \mathbb{N}_{0}$, as well as an elementary result that allows to compute the remaining brackets from the previous ones. We also show that the Gerstenhaber bracket of $\operatorname{HH}^{\bullet}(A)$ is not induced by any Batalin-Vilkovisky generator.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源