论文标题

分割网络具有复合损失函数的氢化摩尔水力水力病变识别

Segmentation Network with Compound Loss Function for Hydatidiform Mole Hydrops Lesion Recognition

论文作者

Zhu, Chengze, Hu, Pingge, Zeng, Xianxu, Wang, Xingtong, Ji, Zehua, Shi, Li

论文摘要

病理形态诊断是氢化痣的标准诊断方法。作为具有恶性潜力的疾病,水力病变的氢化摩尔部分是诊断的重要基础。由于不完全的病变发展,早期的氢化痣很难区分,从而导致临床诊断的准确性较低。作为一项非凡的机器学习技术,图像语义分割网络已在许多医学图像识别任务中使用。我们基于新型损失函数和训练方法开发了一种氢摩尔水交病变分割模型。该模型由不同的网络组成,该网络在像素和病变级别上分割截面图像。我们的复合损失函数将权重分配给两个级别的分割结果,以计算损失。然后,我们提出了一种舞台训练方法,以结合不同级别的各种损失函数的优势。我们在氢化摩尔水交数据集上评估我们的方法。实验表明,使用我们的损失功能和训练方法的拟议模型在不同的分割指标下具有良好的识别性能。

Pathological morphology diagnosis is the standard diagnosis method of hydatidiform mole. As a disease with malignant potential, the hydatidiform mole section of hydrops lesions is an important basis for diagnosis. Due to incomplete lesion development, early hydatidiform mole is difficult to distinguish, resulting in a low accuracy of clinical diagnosis. As a remarkable machine learning technology, image semantic segmentation networks have been used in many medical image recognition tasks. We developed a hydatidiform mole hydrops lesion segmentation model based on a novel loss function and training method. The model consists of different networks that segment the section image at the pixel and lesion levels. Our compound loss function assign weights to the segmentation results of the two levels to calculate the loss. We then propose a stagewise training method to combine the advantages of various loss functions at different levels. We evaluate our method on a hydatidiform mole hydrops dataset. Experiments show that the proposed model with our loss function and training method has good recognition performance under different segmentation metrics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源