论文标题
与固定索引合理连接的log calabi-yau对的异性界限
Birational boundedness of rationally connected log Calabi-Yau pairs with fixed index
论文作者
论文摘要
我们表明,固定尺寸的一组合理连接的投射品种$ x $ $(x,b)$是klt,$ -l(k_x+b)$是Cartier和nef,对于某些固定的正整数$ L $,是界面的modulo flops。
We show that the set of rationally connected projective varieties $X$ of a fixed dimension such that $(X,B)$ is klt, and $-l(K_X+B)$ is Cartier and nef for some fixed positive integer $l$, is bounded modulo flops.