论文标题
基于深度回归的替代模型,用于可再生生成的联合机会约束最佳功率流
Deep-quantile-regression-based surrogate model for joint chance-constrained optimal power flow with renewable generation
论文作者
论文摘要
联合机会受限的最佳功率流(JCC-OPF)是管理分布式可再生生成的不确定性的有前途的工具。但是,大多数现有的作品基于电源流程,这些方程需要在许多分发系统中可能无法观察到的准确网络参数。为了解决这个问题,本文提出了一个基于学习的替代模型,该模型具有可再生生成的。该模型等效地转换了基于分位数形式的关节机会约束,并引入了深度分位回归以复制它们,其中多层感知器(MLP)接受了具有特殊损失函数的训练,以预测约束违规的分数。另一个MLP经过培训以预测预期的功率损失。然后,可以通过将这两个MLP重新定义为混合构成线性约束,而无需网络参数制定JCC-OPF。为了进一步提高其性能,开发了两个预处理步骤,即数据增强和校准。前者训练模拟器来生成更多的培训样品,以提高MLP的预测准确性。后者设计一个正参数来校准MLP的预测,以确保溶液的可行性。基于IEEE 33-和123-BUS系统的数值实验验证了所提出的模型可以同时实现理想的可行性和最佳性,而无需网络参数。
Joint chance-constrained optimal power flow (JCC-OPF) is a promising tool to manage uncertainties from distributed renewable generation. However, most existing works are based on power flow equations, which require accurate network parameters that may be unobservable in many distribution systems. To address this issue, this paper proposes a learning-based surrogate model for JCC-OPF with renewable generation. This model equivalently converts joint chance constraints in quantile-based forms and introduces deep quantile regression to replicate them, in which a multi-layer perceptron (MLP) is trained with a special loss function to predict the quantile of constraint violations. Another MLP is trained to predict the expected power loss. Then, the JCC-OPF can be formulated without network parameters by reformulating these two MLPs into mixed-integer linear constraints. To further improve its performance, two pre-processing steps, i.e., data augmentation and calibration, are developed. The former trains a simulator to generate more training samples for enhancing the prediction accuracy of MLPs. The latter designs a positive parameter to calibrate the predictions of MLPs so that the feasibility of solutions can be guaranteed. Numerical experiments based on the IEEE 33- and 123-bus systems validate that the proposed model can achieve desirable feasibility and optimality simultaneously with no need for network parameters.