论文标题

尼尔森(Nielsen)实现了3个manifolds的球体

Nielsen Realization for sphere twists on 3-manifolds

论文作者

Chen, Lei, Tshishiku, Bena

论文摘要

对于3个manifold M,扭曲组扭曲(M)是twist围绕嵌入式2个spheres生成的映射类组MOD(M)的子组。我们研究了扭曲亚组(M)的尼尔森实现问题。我们证明,当且仅当G是循环并且M是透镜空间的连接之和时,我们证明非平凡的亚组G <twist(M)是通过差异性实现的。我们还将我们的方法应用于3个manifolds的Burnside问题,并表明当M可还原时,DIFF(M)不包含无限的扭转组,而不是连接的镜头空间之和。

For a 3-manifold M, the twist group Twist(M) is the subgroup of the mapping class group Mod(M) generated by twists about embedded 2-spheres. We study the Nielsen realization problem for subgroups of Twist(M). We prove that a nontrivial subgroup G<Twist(M) is realized by diffeomorphisms if and only if G is cyclic and M is a connected sum of lens spaces. We also apply our methods to the Burnside problem for 3-manifolds and show that Diff(M) does not contain an infinite torsion group when M is reducible and not a connected sum of lens spaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源