论文标题

动态潜在空间关系事件模型

Dynamic latent space relational event model

论文作者

Artico, Igor, Wit, Ernst C.

论文摘要

动态关系过程(例如电子邮件交换,银行贷款和科学引用)是动态网络的重要例子,其中关系事件一致的时间stamp逐渐踩踏边缘。在某些情况下,网络可能会被视为某些潜在空间中潜在动态的反映,在某些潜在空间中,节点与动态位置相关联及其相对距离驱动其相互作用趋势。随着时间的流逝,节点可以通过不同的相互作用模式来改变其位置。本文的目的是定义动态的潜在空间关系事件模型。然后,我们开发了一种计算有效的方法来推断节点的位置。我们利用嵌入通用卡尔曼滤波器扩展的期望最大化算法。 Kalman过滤器以在跟踪空间中的对象的背景下是有效的工具而闻名,并在诸如地理定位等领域中获得了成功的应用。我们通过从邻接矩阵序列过滤信号并恢复隐藏的运动来扩展其应用程序。除了潜在空间,我们的配方还包括更传统的固定和随机效果,实现了可以适合各种应用的通用模型。

Dynamic relational processes, such as e-mail exchanges, bank loans and scientific citations, are important examples of dynamic networks, in which the relational events consistute time-stamped edges. There are contexts where the network might be considered a reflection of underlying dynamics in some latent space, whereby nodes are associated with dynamic locations and their relative distances drive their interaction tendencies. As time passes nodes can change their locations assuming new configurations, with different interaction patterns. The aim of this paper is to define a dynamic latent space relational event model. We then develop a computationally efficient method for inferring the locations of the nodes. We make use of the Expectation Maximization algorithm which embeds an extension of the universal Kalman filter. Kalman filters are known for being effective tools in the context of tracking objects in the space, with successful applications in fields such as geolocalization. We extend its application to dynamic networks by filtering the signal from a sequence of adjacency matrices and recovering the hidden movements. Besides the latent space our formulation includes also more traditional fixed and random effects, achieving a general model that can suit a large variety of applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源