论文标题

在网络上具有不连续通量功能的保护定律:分裂算法

Conservation laws with discontinuous flux function on networks: a splitting algorithm

论文作者

Friedrich, Jan, Göttlich, Simone, Uphoff, Annika

论文摘要

在本文中,我们介绍了[22]中提出的分裂算法的扩展,以在未知中具有分段线性不连续的通量函数的保护定律网络。我们首先讨论合适的Riemann求解器,然后描述如何在网络上使用拆分算法的策略。特别是,我们专注于两种类型的交界处,即,即将向往的道路数量不超过传入道路数量(分散类型)和两种接入和一条即将出发的道路(合并类型)的交界处。最后,数值示例证明了通过与精确解决方案和文献中使用的其他方法进行比较,证明了分裂算法的准确性。

In this article, we present an extension of the splitting algorithm proposed in [22] to networks of conservation laws with piecewise linear discontinuous flux functions in the unknown. We start with the discussion of a suitable Riemann solver at the junction and then describe a strategy how to use the splitting algorithm on the network. In particular, we focus on two types of junctions, i.e., junctions where the number of outgoing roads does not exceed the number of incoming roads (dispersing type) and junctions with two incoming and one outgoing road (merging type). Finally, numerical examples demonstrate the accuracy of the splitting algorithm by comparisons to the exact solution and other approaches used in the literature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源