论文标题

广义复合物的IFS的限制集的填料度量和尺寸持续分数

Packing measure and dimension of the limit sets of IFSs of generalized complex continued fractions

论文作者

Inui, Kanji, Sumi, Hiroki

论文摘要

我们考虑了一个普遍的复合物持续分数的共形性迭代功能系统(简称CIFSS)家族。请注意,在我们的上一篇论文中,我们表明,限制集合的适当数值的Hausdorff度量为零,并且相对于Hausdorff尺寸的极限集的填料度量为正。在本文中,我们表明,家族中每个CIF的极限集的包装尺寸和Hausdorff尺寸相等,并且极限集的适当维填料度量是有限的。

We consider a family of conformal iterated function systems (for short, CIFSs) of generalized complex continued fractions. Note that in our previous paper we showed that the proper-dimensional Hausdorff measure of the limit set is zero and the packing measure of the limit set with respect to the Hausdorff dimension is positive. In this paper, we show that the packing dimension and the Hausdorff dimension of the limit set of each CIFS in the family are equal, and the proper-dimensional packing measure of the limit set is finite.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源