论文标题

表面增强拉曼散射芯片的过渡金属氮化物的结构工程

Structural engineering of transition-metal nitrides for surface-enhanced Raman scattering chips

论文作者

Lan, Leilei, Yao, Haorun, Li, Guoqun, Fan, Xingce, Li, Mingze, Qiu, Teng

论文摘要

无贵的金属表面增强拉曼散射(SERS)底物吸引了其丰富的来源,良好的信号均匀性,出色的生物相容性和高化学稳定性。但是,缺乏可控的合成和具有高SERS活性的贵族无金属底物的制造会阻碍其实际应用。在此,我们提出了一种一般策略,以通过环境温度溅射沉积途径来制造一系列平面过渡金属(TMN)SERS芯片。这些平面TMN(这些硝酸盐,硝酸盐,硝酸tantalum tantalum ninrim和Molybdenum nitride)与RAMAN芯片之间的反应相差(ED 155)(e ef)(e ef)(e ef)(e ef)的效果(e efride figpriation)〜〜 TMN芯片和探针分子。此外,这些TMN芯片的结构工程用于改善其SERS活性。通过构建纳米腔结构,受益于电荷转移过程和电场增强的协同效应,WN纳米腔芯片的拉曼EF可以大大提高到1.29 * 107,这比平面芯片高的数量级。此外,我们还设计了WN/单层MOS2异质结构芯片。随着上WN上的表面电子密度的增加,可以实现1.94 * 107级的EF和5 * 10-10 m级别的拘留极限。我们的结果为超敏感贵族无金属的SERS芯片的结构设计提供了重要的指导。

Noble-metal-free surface-enhanced Raman scattering (SERS) substrates have attracted great attention for their abundant sources, good signal uniformity, superior biocompatibility, and high chemical stability. However, the lack of controllable synthesis and fabrication of noble-metal-free substrates with high SERS activity impedes their practical applications. Herein,we propose a general strategy to fabricate a series of planar transition-metal nitride (TMN) SERS chips via an ambient temperature sputtering deposition route.These planar TMN (tungsten nitride, tantalum nitride, and molybdenum nitride) chips show remarkable Raman enhancement factors (EFs) with ~105 owing to efficient photoinduced charge transfer process between TMN chips and probe molecules. Further, structural engineering of these TMN chips is used to improve their SERS activity. Benefiting from the synergistic effect of charge transfer process and electric field enhancement by constructing nanocavity structure, the Raman EF of WN nanocavity chips could be greatly improved to 1.29 * 107, which is an order of magnitude higher than that of planar chips. Moreover, we also design the WN/monolayer MoS2 heterostructure chips. With the increase of surface electron density on the upper WN and more exciton resonance transitions in the heterostructure, a 1.94 * 107 level EF and a 5 * 10-10 m level detention limit could be achieved. Our results provide important guidance for the structural design of ultrasensitive noble-metal-free SERS chips.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源