论文标题
使用半监督方法从卫星图像中绘制临时贫民窟
Mapping Temporary Slums from Satellite Imagery using a Semi-Supervised Approach
论文作者
论文摘要
据估计,全世界有10亿人生活在贫民窟中,记录和分析这些地区是一项艰巨的任务。与常规贫民窟相比;临时贫民窟的小,分散和暂时性的性质使数据收集并标记乏味且耗时。为了解决这个具有挑战性的临时贫民窟检测问题,我们提出了一种半监督的基于深度学习细分的方法。使用零标记的数据设置中检测初始种子图像的策略。通过分析时间变化自动发现一小部分种子样本(在我们的情况下为32个),这些变化被手动标记以训练分割和表示模块。分割模块收集高维图像表示,而表示模块将图像表示转换为嵌入向量。之后,一个评分模块使用嵌入矢量从大量未标记的图像库中采样图像,并为采样图像生成伪标记。这些带有伪标签的抽样图像被添加到训练集中,以迭代更新分段和表示模块。为了分析我们技术的有效性,我们构建了一个大型地理标记的临时贫民窟数据集。该数据集构成了200多个潜在的临时贫民窟位置(2.28平方公里),通过从巴基斯坦的12个大都市城市中筛分六千千像图像,覆盖了8000平方公里。此外,我们提出的方法在类似的环境下优于几个竞争性半监督语义分割基线。代码和数据集将公开可用。
One billion people worldwide are estimated to be living in slums, and documenting and analyzing these regions is a challenging task. As compared to regular slums; the small, scattered and temporary nature of temporary slums makes data collection and labeling tedious and time-consuming. To tackle this challenging problem of temporary slums detection, we present a semi-supervised deep learning segmentation-based approach; with the strategy to detect initial seed images in the zero-labeled data settings. A small set of seed samples (32 in our case) are automatically discovered by analyzing the temporal changes, which are manually labeled to train a segmentation and representation learning module. The segmentation module gathers high dimensional image representations, and the representation learning module transforms image representations into embedding vectors. After that, a scoring module uses the embedding vectors to sample images from a large pool of unlabeled images and generates pseudo-labels for the sampled images. These sampled images with their pseudo-labels are added to the training set to update the segmentation and representation learning modules iteratively. To analyze the effectiveness of our technique, we construct a large geographically marked dataset of temporary slums. This dataset constitutes more than 200 potential temporary slum locations (2.28 square kilometers) found by sieving sixty-eight thousand images from 12 metropolitan cities of Pakistan covering 8000 square kilometers. Furthermore, our proposed method outperforms several competitive semi-supervised semantic segmentation baselines on a similar setting. The code and the dataset will be made publicly available.