论文标题

可靠拟合高斯图形模型:R-package RobfitCongraph

Robustly fitting Gaussian graphical models: the R-package robFitConGraph

论文作者

Vogel, Daniel, Watt, Stuart J., Wiedemann, Anna

论文摘要

给出了R-Package RobfitCongraph的教程风格的介绍。后者为高斯图形模型提供了强大的合适性测试。它的用途在有关音乐性能焦虑的数据示例中证明了这一点,这也说明了为什么要适合高斯图形模型,以及为什么人们应该这样做。简要解释了基本的统计理论。本文介绍了4.4.1版的包装,可在2022年12月1日从Cran上获得。请参阅https://cran.r-project.org/package=robfitcongraph

A tutorial-style introduction to the R-package robFitConGraph is given. The latter provides a robust goodness-of-fit test for Gaussian graphical models. Its use is demonstrated at a data example on music performance anxiety, which also illustrates why one would want to fit a Gaussian graphical model - and why one should do so robustly. The underlying statistical theory is briefly explained. The paper describes package version 0.4.1, available on CRAN from December 1, 2022. See https://CRAN.R-project.org/package=robFitConGraph

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源