论文标题
通过银河系时间和最大年龄停滞的岩石岩石系外球星的地幔脱气寿命可以支持温带气候
Mantle Degassing Lifetimes through Galactic Time and the Maximum Age Stagnant-lid Rocky Exoplanets can Support Temperate Climates
论文作者
论文摘要
寻找生活的理想系外行星是恒星宜居区域内的人。但是,即使在可居住的区域内,行星仍然可以发展出无法居住的气候状态。维持温带气候在地质($ \ sim $ gyr)上的时间标准需要一个行星包含足够的内部能量来为行星规模的碳循环供电。岩石星球能量预算的主要组成部分是放射性元素的衰减产生的热量,尤其是$^{40} $ k,$^{232} $ th,$^{235} $ u和$^{238} $ u。随着行星的年龄和这些元素的衰变,这种放射原能来源减少。在这里,我们通过将在恒星丰度数据中看到的系统对系统变化与银河化学化学演化模型的结果相结合,估计通过银河系历史进入岩石系外行星的这些热量元素(HPE)的概率分布。使用这些分布,我们执行蒙特卡洛热进化模型,以最大化地幔冷却速率。这使我们能够对寿命进行悲观的估计,而岩石,停滞的系外行星可以支持全球碳循环和温带气候,这是其质量的函数以及在银河历史上的函数。我们将此框架应用于具有测量年龄的17个可能的岩石系外行星的样本,尽管我们进行了悲观的假设,但我们预测的7种可能会积极脱气。对于包括轨道trappist-1在内的其余行星,我们不能自信地假设它们目前包含足够的内部热量,以支撑地幔脱气,以足以维持全球碳循环或温带气候,而无需额外的潮汐加热或进行板块构造。
The ideal exoplanets to search for life are those within a star's habitable zone. However, even within the habitable zone planets can still develop uninhabitable climate states. Sustaining a temperate climate over geologic ($\sim$Gyr) timescales requires a planet contain sufficient internal energy to power a planetary-scale carbon cycle. A major component of a rocky planet's energy budget is the heat produced by the decay of radioactive elements, especially $^{40}$K, $^{232}$Th, $^{235}$U and $^{238}$U. As the planet ages and these elements decay, this radiogenic energy source dwindles. Here we estimate the probability distribution of the amount of these heat producing elements (HPEs) that enter into rocky exoplanets through Galactic history, by combining the system-to-system variation seen in stellar abundance data with the results from Galactic chemical evolution models. Using these distributions, we perform Monte-Carlo thermal evolution models that maximize the mantle cooling rate. This allows us to create a pessimistic estimate of lifetime a rocky, stagnant-lid exoplanet can support a global carbon cycle and temperate climate as a function of its mass and when it in Galactic history. We apply this framework to a sample of 17 likely rocky exoplanets with measured ages, 7 of which we predict are likely to be actively degassing today despite our pessimistic assumptions. For the remaining planets, including those orbiting TRAPPIST-1, we cannot confidently assume they currently contain sufficient internal heat to support mantle degassing at a rate sufficient to sustain a global carbon cycle or temperate climate without additional tidal heating or undergoing plate tectonics.