论文标题
使用预训练的变压器增强水下图像
Underwater Image Enhancement Using Pre-trained Transformer
论文作者
论文摘要
这项工作的目的是应用Denoising Image Transform,以从水下图像中删除失真,并将其与其他类似方法进行比较。自动恢复水下图像起着重要作用,因为它可以提高图像的质量,而无需更昂贵的设备。这是机器学习算法支持海洋探索和监视的重要作用的一个关键例子,从而减少了对人类干预的需求,例如图像的手动处理,从而节省了时间,精力和成本。本文是基于图像变压器的方法的第一个应用,称为“预训练的图像处理变压器”对水下图像。该方法在UFO-1220数据集上进行了测试,其中包含1500张带有相应清洁图像的图像。
The goal of this work is to apply a denoising image transformer to remove the distortion from underwater images and compare it with other similar approaches. Automatic restoration of underwater images plays an important role since it allows to increase the quality of the images, without the need for more expensive equipment. This is a critical example of the important role of the machine learning algorithms to support marine exploration and monitoring, reducing the need for human intervention like the manual processing of the images, thus saving time, effort, and cost. This paper is the first application of the image transformer-based approach called "Pre-Trained Image Processing Transformer" to underwater images. This approach is tested on the UFO-120 dataset, containing 1500 images with the corresponding clean images.