论文标题
传送
Quantum Routing with Teleportation
论文作者
论文摘要
我们研究了在量子系统中实施量子位的任意排列的问题,该量子系统允许任意快速的本地操作和经典通信(LOCC)。特别是,我们通过分发纠缠和使用LOCC执行量子传送,展示了基于掉期和更通用的统一路由方法的加速示例。我们进一步描述了一个相互作用图的示例,在基于交换的路由上,在最差的案例路由时间中,传送给对数加速度。我们还研究了量子传送的加速度的限制 - 显示$ o(\ sqrt {n \ log n})$在路由时间的分离时间上的任何交互图中的分离上的上限 - 并为某些常见的图形类别提供更严格的范围。
We study the problem of implementing arbitrary permutations of qubits under interaction constraints in quantum systems that allow for arbitrarily fast local operations and classical communication (LOCC). In particular, we show examples of speedups over swap-based and more general unitary routing methods by distributing entanglement and using LOCC to perform quantum teleportation. We further describe an example of an interaction graph for which teleportation gives a logarithmic speedup in the worst-case routing time over swap-based routing. We also study limits on the speedup afforded by quantum teleportation - showing an $O(\sqrt{N \log N})$ upper bound on the separation in routing time for any interaction graph - and give tighter bounds for some common classes of graphs.