论文标题

Hensel最小性:$ \ ell $ -H-MINIMITH的几何标准

Hensel minimality: Geometric criteria for $\ell$-h-minimality

论文作者

Vermeulen, Floris

论文摘要

最近,Cluckers,Halupczok和Rideau-Kikuchi开发了一个新的公理框架,用于驯服的非Archimedean几何形状,称为Hensel最小值。它与作者一起扩展到混合特征。 Hensel最小值旨在模仿强大后果和广泛适用性的O最小性。在本文中,我们继续研究Hensel最小值,特别是专注于$ω$ -H-MINIMITAL和$ \ ell $ -H-MINIMATIE,以$ \ ell $ a正整数。我们的主要结果包括用于$ \ ell $ -H-MINIMALITY的分析标准,在估值调整下保存$ \ ell $ -h -Inimimal和$ \ ell $ - 维尺寸的几何形状。

Recently, Cluckers, Halupczok and Rideau-Kikuchi developed a new axiomatic framework for tame non-Archimedean geometry, called Hensel minimality. It was extended to mixed characteristic together with the author. Hensel minimality aims to mimic o-minimality in both strong consequences and wide applicability. In this article, we continue the study of Hensel minimality, in particular focusing on $ω$-h-minimality and $\ell$-h-minimality, for $\ell$ a positive integer. Our main results include an analytic criterion for $\ell$-h-minimality, preservation of $\ell$-h-minimality under coarsening of the valuation and $\ell$-dimensional dimensional geometry.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源