论文标题
将热木星HD 209458B的大气化学与通过红外传输和发射光谱联系起来
Linking atmospheric chemistry of the hot Jupiter HD 209458b to its formation location through infrared transmission and emission spectra
论文作者
论文摘要
热木星大气中的碳,氮和氧的元素比可能会保留其在原始盘中的地层位置的线索。在这项工作中,我们从椎间盘化学动力学模型中的几个位置采用C,N和O的气相化学丰度,作为热木星HD 209458B信封的来源,并使用1D化学动力学模型来进化地球的大气组成,从而处理垂直混合和光学化学。我们考虑了两个大气压温度轮廓,一个曲线有一个,一个没有热反转。从所得的32个大气组成曲线中,我们发现分子CH4,NH3,HCN和C2H2在使用现实的非归因P-T曲线计算的大气中更为突出,与先前的基于平衡的化学作品相比,使用了分析P-T轮廓。我们还计算了这些大气的合成传递和发射光谱,发现许多光谱特征随圆盘中的位置而变化。通过与使用最新高分辨率地面观测检测的物种进行比较,我们的模型表明HD 209458B可以从其原始盘中具有超太阳C/O比的CO2和CH4 ICELINE之间的大部分气体,这又直接从Protostellar Cloud继承了其化学丰度。最后,我们使用詹姆斯·韦伯(James Webb)太空望远镜(JWST)模拟观察地球,并表明可以识别关键物种的光谱特征的差异。我们的研究表明,JWST在为热木星的形成环境提供新的见解方面非常重要。
The elemental ratios of carbon, nitrogen, and oxygen in the atmospheres of hot Jupiters may hold clues to their formation locations in the protostellar disc. In this work, we adopt gas phase chemical abundances of C, N and O from several locations in a disc chemical kinetics model as sources for the envelope of the hot Jupiter HD 209458b and evolve the planet's atmospheric composition using a 1D chemical kinetics model, treating both vertical mixing and photochemistry. We consider two atmospheric pressure-temperature profiles, one with and one without a thermal inversion. From each of the resulting 32 atmospheric composition profiles, we find that the molecules CH4, NH3, HCN, and C2H2 are more prominent in the atmospheres computed using a realistic non-inverted P-T profile in comparison to a prior equilibrium chemistry based work which used an analytical P-T profile. We also compute the synthetic transmission and emission spectra for these atmospheres and find that many spectral features vary with the location in the disc where the planet's envelope was accreted. By comparing with the species detected using the latest high-resolution ground-based observations, our model suggests HD 209458b could have accreted most of its gas between the CO2 and CH4 icelines with a super solar C/O ratio from its protostellar disc, which in turn directly inherited its chemical abundances from the protostellar cloud. Finally, we simulate observing the planet with the James Webb Space Telescope (JWST) and show that differences in spectral signatures of key species can be recognized. Our study demonstrates the enormous importance of JWST in providing new insights into hot Jupiter's formation environments.