论文标题
浮子同源性和右弯曲单曲
Floer homology and right-veering monodromy
论文作者
论文摘要
我们证明,纤维结的结式浮子复合物检测其纤维化的单片是否是正确的。特别是,这导致了本田,kazez和matic的作品,纯粹的结构纯粹的浮子特征。我们的证明利用了映射Tori的Heegaard Floer同源性与区域保护表面差异性的象征性浮子同源性之间的关系。我们描述了这项工作对Dehn手术和拉紧叶的应用。
We prove that the knot Floer complex of a fibered knot detects whether the monodromy of its fibration is right-veering. In particular, this leads to a purely knot Floer-theoretic characterization of tight contact structures, by the work of Honda, Kazez, and Matic. Our proof makes use of the relationship between the Heegaard Floer homology of mapping tori and the symplectic Floer homology of area-preserving surface diffeomorphisms. We describe applications of this work to Dehn surgeries and taut foliations.