论文标题
基于随机梯度的快速分布式多能管理,用于具有时间耦合约束的工业公园
Stochastic Gradient-based Fast Distributed Multi-Energy Management for an Industrial Park with Temporally-Coupled Constraints
论文作者
论文摘要
人们对高成本和低效率供应效率低的担忧越来越挑战当代工业园区。此外,在不确定的供需的情况下,如何动员延迟弹性弹性载荷并补偿实时非弹性负载以匹配多能生成/存储并最大程度地减少能源成本是一个关键问题。由于在不了解随机变量的统计信息的情况下,几乎无法离线实施能源管理,因此本文提出了一个系统的在线能源成本最小化框架,以实现对多能量的补充利用,并随着时变的生成,需求和价格。特别是为了实现由于存储和短期能源平衡而产生的充电/放电约束,提出了一种基于随机梯度的快速分布式算法,并提出了两次计算实施的随机梯度,以确保在线实施。为了减少峰值负载,通过估计用户愿意转移的意愿来实现激励机制。还提供了参数设置的分析结果,以确保所提出的设计的可行性和最佳性。数值结果表明,当电力的出价扩散足够小时,提出的算法可以渐近地实现接近最佳的成本。
Contemporary industrial parks are challenged by the growing concerns about high cost and low efficiency of energy supply. Moreover, in the case of uncertain supply/demand, how to mobilize delay-tolerant elastic loads and compensate real-time inelastic loads to match multi-energy generation/storage and minimize energy cost is a key issue. Since energy management is hardly to be implemented offline without knowing statistical information of random variables, this paper presents a systematic online energy cost minimization framework to fulfill the complementary utilization of multi-energy with time-varying generation, demand and price. Specifically to achieve charging/discharging constraints due to storage and short-term energy balancing, a fast distributed algorithm based on stochastic gradient with two-timescale implementation is proposed to ensure online implementation. To reduce the peak loads, an incentive mechanism is implemented by estimating users' willingness to shift. Analytical results on parameter setting are also given to guarantee feasibility and optimality of the proposed design. Numerical results show that when the bid-ask spread of electricity is small enough, the proposed algorithm can achieve the close-to-optimal cost asymptotically.