论文标题

基于深度学习的非线性系统LPV模型的识别

Deep-Learning-Based Identification of LPV Models for Nonlinear Systems

论文作者

Verhoek, Chris, Beintema, Gerben I., Haesaert, Sofie, Schoukens, Maarten, th, Roland Tó

论文摘要

线性参数变化(LPV)框架提供了一个建模和控制设计工具链,可通过线性替代模型来解决非线性(NL)系统行为。尽管对LPV数据驱动的建模进行了重大的研究工作,但当前识别理论的关键缺点通常是调度变量被认为是数据集中的给定测量信号。如果识别NL系统的LPV模型,则将调度映射的选择(描述与可测量的调度信号的关系)放在用户的肩膀上,只有有限的支持工具。但是,这种选择极大地影响了所得LPV模型的可用性和复杂性。本文提出了一种基于深度学习的方法,可从输入输入数据中提供NL系统的调度映射和LPV状态空间模型的联合估计,并在一般创新型噪声条件下具有一致性保证。在现实的识别问题上证明了它的效率。

The Linear Parameter-Varying (LPV) framework provides a modeling and control design toolchain to address nonlinear (NL) system behavior via linear surrogate models. Despite major research effort on LPV data-driven modeling, a key shortcoming of the current identification theory is that often the scheduling variable is assumed to be a given measured signal in the data set. In case of identifying an LPV model of a NL system, the selection of the scheduling map, which describes the relation to the measurable scheduling signal, is put on the users' shoulder, with only limited supporting tools available. This choice however greatly affects the usability and complexity of the resulting LPV model. This paper presents a deep-learning-based approach to provide joint estimation of a scheduling map and an LPV state-space model of a NL system from input-output data, and has consistency guarantees under general innovation-type noise conditions. Its efficiency is demonstrated on a realistic identification problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源