论文标题
KGI:知识密集语言任务的综合框架
KGI: An Integrated Framework for Knowledge Intensive Language Tasks
论文作者
论文摘要
在本文中,我们提出了一个系统,以展示最新的最新检索增强生成模型的功能,该模型接受了知识密集型语言任务的培训,例如插槽填充,开放式域问题答案,对话和事实检查。此外,鉴于用户查询,我们展示了如何将来自这些不同模型的输出组合在一起以互相盘问彼此的输出。特别是,我们展示了使用问题回答模型如何提高对话的准确性。我们还将发布演示中使用的所有模型作为本文的贡献。一个简短的视频,展示了该系统,请访问https://ibm.box.com/v/emnlp2022-demo。
In this paper, we present a system to showcase the capabilities of the latest state-of-the-art retrieval augmented generation models trained on knowledge-intensive language tasks, such as slot filling, open domain question answering, dialogue, and fact-checking. Moreover, given a user query, we show how the output from these different models can be combined to cross-examine the outputs of each other. Particularly, we show how accuracy in dialogue can be improved using the question answering model. We are also releasing all models used in the demo as a contribution of this paper. A short video demonstrating the system is available at https://ibm.box.com/v/emnlp2022-demo.