论文标题

hurwitz-lerch zeta功能超过质数的总和:推导和评估

Sum of the Hurwitz-Lerch Zeta Function over Prime Numbers: Derivation and Evaluation

论文作者

Reynolds, Robert, Stauffer, Allan

论文摘要

对于功能$ f(m,p,q,n)$,其中$ k,s,a $一般的复数数字和$ q $任何正整数,我们建立了hurwitz-lerch zeta zeta函数$φ的值之和(f(m,p,p,q,q,q,q,q,k,k,a)$以素数$ n $ $ n $。根据三角功能和加泰罗尼亚恒定$ k $的产品,对此款项的特殊情况进行了评估。

For the function $f(m,p,q,n)$, where $k,s,a$ general complex numbers and $q$ any positive integer, we establish the sum of values of the Hurwitz-Lerch zeta function $Φ(f(m,p,q,n),k,a)$ taken at prime numbers $n$. Special cases of this sum are evaluated in terms of products of trigonometric functions and Catalan's constant $K$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源