论文标题

折磨者:确定性动态路径,分形的数据增强

TorMentor: Deterministic dynamic-path, data augmentations with fractals

论文作者

Nicolaou, Anguelos, Christlein, Vincent, Riba, Edgar, Shi, Jian, Vogeler, Georg, Seuret, Mathias

论文摘要

我们建议将分形作为有效数据增强的手段。具体而言,我们采用等离子体分形来调整全局图像增强变换为连续的局部变换。我们将钻石方形算法作为简单卷积操作的级联反应,从而有效地计算了GPU上的血浆分形。我们介绍了折磨者图像增强框架,该框架在图像和点云中完全是模块化和确定性的。所有图像增强操作都可以通过管道和随机分支组合,以形成任意宽度和深度的流动网络。我们通过对DIBCO数据集进行了对文档图像分割(二进制)的实验来证明所提出的方法的效率。提出的方法表明,与传统图像增强技术相比,性能卓越。最后,我们在自我划分团中使用扩展的合成二进制文本图像,并在使用有限的数据和简单扩展训练时胜过相同的模型。

We propose the use of fractals as a means of efficient data augmentation. Specifically, we employ plasma fractals for adapting global image augmentation transformations into continuous local transforms. We formulate the diamond square algorithm as a cascade of simple convolution operations allowing efficient computation of plasma fractals on the GPU. We present the TorMentor image augmentation framework that is totally modular and deterministic across images and point-clouds. All image augmentation operations can be combined through pipelining and random branching to form flow networks of arbitrary width and depth. We demonstrate the efficiency of the proposed approach with experiments on document image segmentation (binarization) with the DIBCO datasets. The proposed approach demonstrates superior performance to traditional image augmentation techniques. Finally, we use extended synthetic binary text images in a self-supervision regiment and outperform the same model when trained with limited data and simple extensions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源