论文标题
极端雷利数字的雷利 - 贝纳德对流的大涡模拟
Large-eddy simulation of Rayleigh-Bénard convection at extreme Rayleigh numbers
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We adopt the stretched spiral vortex sub-grid model for large-eddy simulation (LES) of turbulent convection at extreme Rayleigh numbers. We simulate Rayleigh-Bénard convection (RBC) for Rayleigh numbers ranging from $10^6$ to $10^15$ and for Prandtl numbers 0.768 and 1. We choose a box of dimensions 1:1:10 to reduce computational cost. Our LES yields Nusselt and Reynolds numbers that are in good agreement with the direct-numerical simulation (DNS) results of Iyer et al. (Proc. Natl. Acad. Sci., vol 117 (14), 2020, pp. 7594-7598), albeit with a smaller grid size and at significantly reduced computational expense. For example, in our simulations at $Ra = 10^13$, we use grids that are 1/120 times the grid-resolution as that of the DNS (Iyer et al., Proc. Natl. Acad. Sci., vol 117 (14), 2020, pp. 7594-7598). The Reynolds numbers in our simulations span 3 orders of magnitude from 1,000 to 1,700,000. Consistent with the literature, we obtain scaling relations for Nusselt and Reynolds numbers as $Nu \sim Ra^{0.317}$ and $Re \sim Ra^{0.497}$. We also perform LES of RBC with periodic side-walls, for which we obtain the corresponding scaling exponents as 0.343 and 0.477 respectively. Our LES is a promising tool to push simulations of thermal convection to extreme Rayleigh numbers, and hence enable us to test the transition to ultimate convection regime.