论文标题
通过柔性和分层的多元测量模型合成纵向皮质厚度估计值
Synthesizing longitudinal cortical thickness estimates with a flexible and hierarchical multivariate measurement-error model
论文作者
论文摘要
基于MRI的内嗅皮质厚度(ECT)测量值可预测阿尔茨海默氏病(AD)的认知能力下降,其成本低和侵入性最小。两个突出的成像范例,即FreeSurfer(FS)和高级归一化工具(ANT)具有多种管道,用于从RAW MRI中提取特定区域的ECT测量,但是这些管道的纯粹复杂性很难在管道之间进行选择,可以在管道之间进行比较,并在管道之间进行比较,并在管道估计中表征了不确定的不确定。更糟糕的是,EC特别难以成像,从而导致管道之间的厚度估计值的变化,这些管道层面是淹没AD的生理变化。我们检查了阿尔茨海默氏病神经影像倡议中MRI的七个不同管道的ECT输出。由于理论和实际局限性,我们没有评估它们的黄金标准。相反,我们使用贝叶斯分层模型将估计值结合在一起。由此产生的后验分布产生高概率的理想化ECT值,通过灵活的多元误差模型来解释固有的不确定性,该模型支持不同的恒定偏移,标准偏差,尾随和相关结构之间的管道之间的不确定性。我们的分层模型将理想化的ECT与临床结果直接相关,以传播ECT估计的临床估计不确定性,同时考虑到数据中的纵向结构。令人惊讶的是,即使它在先前提供的预测指标和正则化中融合了更大的不确定性,但组合模型揭示了ECT和认知能力之间的相关性比单独的单个管道的数据基于非层次模型更强。
MRI-based entorhinal cortical thickness (eCT) measurements predict cognitive decline in Alzheimer's disease (AD) with low cost and minimal invasiveness. Two prominent imaging paradigms, FreeSurfer (FS) and Advanced Normalization Tools (ANTs), feature multiple pipelines for extracting region-specific eCT measurements from raw MRI, but the sheer complexity of these pipelines makes it difficult to choose between pipelines, compare results between pipelines, and characterize uncertainty in pipeline estimates. Worse yet, the EC is particularly difficult to image, leading to variations in thickness estimates between pipelines that overwhelm physiologicl variations predictive of AD. We examine the eCT outputs of seven different pipelines on MRIs from the Alzheimer's Disease Neuroimaging Initiative. Because of both theoretical and practical limitations, we have no gold standard by which to evaluate them. Instead, we use a Bayesian hierarchical model to combine the estimates. The resulting posterior distribution yields high-probability idealized eCT values that account for inherent uncertainty through a flexible multivariate error model that supports different constant offsets, standard deviations, tailedness, and correlation structures between pipelines. Our hierarchical model directly relates idealized eCTs to clinical outcomes in a way that propagates eCT estimation uncertainty to clinical estimates while accounting for longitudinal structure in the data. Surprisingly, even though it incorporates greater uncertainty in the predictor and regularization provided by the prior, the combined model reveals a stronger association between eCT and cognitive capacity than do nonhierarchical models based on data from single pipelines alone.