论文标题
固定的可数,算术饱和结构的自动形态
Fixed Sets of Automorphisms of Countable, Arithmetically Saturated Structures
论文作者
论文摘要
如果结构m的自动形态f使得固定(f^k)=所有正k的fix(f),则m | fix(f)是M的子结构。当M可数时M | fix(F)的同构类型的类型是可计数和算术时表征的。
If an automorphism f of a structure M is such that fix(f^k) = fix(f) for all positive k, then M|fix(f) is a substructure of M. The possible isomorphism types of such M|fix(f) are characterized when M is countable and arithmetically saturated.