论文标题
部分可观测时空混沌系统的无模型预测
Extremal bounds for Dirichlet polynomials with random multiplicative coefficients
论文作者
论文摘要
对于$ x(n)$ a steinhaus随机乘法功能,我们研究随机dirichlet polyenmial $$ d_n(t)= \ frac1 {\ sqrt {\ sqrt {n}} \ sum_ {n \ leq n} x(n} x(n)n^it},$ t $ t $ t $ t $ t $ t $ t $。特别是,对于固定的$ c> 0 $和任何小$ \ varepsilon> 0 $,我们表明,有了很高的概率, \ exp((\ log n)^{1/2- \ varepsilon})\ ll \ sup_ {| t | \ leq n^c} | d_n(t)| \ ll \ exp((\ log n)^{1/2+\ varepsilon})。 $$
For $X(n)$ a Steinhaus random multiplicative function, we study the maximal size of the random Dirichlet polynomial $$ D_N(t) = \frac1{\sqrt{N}} \sum_{n \leq N} X(n) n^{it}, $$ with $t$ in various ranges. In particular, for fixed $C>0$ and any small $\varepsilon>0$ we show that, with high probability, $$ \exp( (\log N)^{1/2-\varepsilon} ) \ll \sup_{|t| \leq N^C} |D_N(t)| \ll \exp( (\log N)^{1/2+\varepsilon}). $$