论文标题
混合晶格矢量空间上的兼容拓扑
Compatible topologies on mixed lattice vector spaces
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
A mixed lattice vector space is a partially ordered vector space with two partial orderings, generalizing the notion of a Riesz space. Whereas the algebraic theory of mixed lattice structures dates back to the 1970s, the topological theory of mixed lattice spaces remains largely unexplored. The purpose of this paper is to develop the basic topological theory of mixed lattice spaces. A vector topology is said to be compatible with the mixed lattice structure if the mixed lattice operations are continuous. We obtain a characterization of compatible mixed lattice topologies, which is similar to the well known Roberts-Namioka characterization of locally solid Riesz spaces. Moreover, we study locally convex topologies and the associated seminorms, as well as connections between mixed lattice topologies and locally solid topologies on Riesz spaces. We also briefly discuss asymmetric norms and cone norms on mixed lattice spaces.