论文标题
半兄弟回归符合系外行星成像:使用灵活的,域知识驱动的因果框架的PSF建模和减法
Half-sibling regression meets exoplanet imaging: PSF modeling and subtraction using a flexible, domain knowledge-driven, causal framework
论文作者
论文摘要
系外行星的高对比度成像取决于强大的后处理方法,以降低数据并将伴侣的信号与其宿主星的信号分开,而宿主星(通常是较大的数量级)。现有的后处理算法并未使用有关该问题的所有先前域知识。我们提出了一种新方法,以我们对系统噪声和数据生成过程的因果结构的理解为基础。我们的算法基于修改版的半兄弟回归(HSR),这是一个灵活的Denoising框架,结合了机器学习和因果关系的想法。我们适应了解决以学生跟踪模式获得的高对比度系外行星成像数据的特定要求的方法。关键思想是通过将此像素的时间序列回归到一组有因果独立的,无信号的预测像素的时间序列来估计像素中的系统噪声。我们在这项工作中使用正规化的线性模型;但是,其他(非线性)模型也是可能的。在第二步中,我们演示了HSR框架如何使我们能够将风速或空气温度等观测条件作为其他预测变量。当我们将方法应用于VLT/NACO仪器中的四个数据集时,我们的算法提供了比基于PCA的PCF PSF减法更好的假阳性分数,这是该领域流行的基线方法。此外,我们发现基于HSR的方法提供了直接,准确的估计外部行星对比度,而无需在数据集中插入人工伴侣进行校准。最后,我们提供了第一个证据,表明将观测条件用作其他预测因素可以改善结果。我们的基于HSR的方法为模拟和减去系外行星成像数据中的恒星PSF和系统噪声的挑战提供了一种替代,灵活和有希望的方法。
High-contrast imaging of exoplanets hinges on powerful post-processing methods to denoise the data and separate the signal of a companion from its host star, which is typically orders of magnitude brighter. Existing post-processing algorithms do not use all prior domain knowledge that is available about the problem. We propose a new method that builds on our understanding of the systematic noise and the causal structure of the data-generating process. Our algorithm is based on a modified version of half-sibling regression (HSR), a flexible denoising framework that combines ideas from the fields of machine learning and causality. We adapt the method to address the specific requirements of high-contrast exoplanet imaging data obtained in pupil tracking mode. The key idea is to estimate the systematic noise in a pixel by regressing the time series of this pixel onto a set of causally independent, signal-free predictor pixels. We use regularized linear models in this work; however, other (non-linear) models are also possible. In a second step, we demonstrate how the HSR framework allows us to incorporate observing conditions such as wind speed or air temperature as additional predictors. When we apply our method to four data sets from the VLT/NACO instrument, our algorithm provides a better false-positive fraction than PCA-based PSF subtraction, a popular baseline method in the field. Additionally, we find that the HSR-based method provides direct and accurate estimates for the contrast of the exoplanets without the need to insert artificial companions for calibration in the data sets. Finally, we present first evidence that using the observing conditions as additional predictors can improve the results. Our HSR-based method provides an alternative, flexible and promising approach to the challenge of modeling and subtracting the stellar PSF and systematic noise in exoplanet imaging data.