论文标题

持续推断:用于在线推理的图书馆与Pytorch的深神经网络推断

Continual Inference: A Library for Efficient Online Inference with Deep Neural Networks in PyTorch

论文作者

Hedegaard, Lukas, Iosifidis, Alexandros

论文摘要

我们提出了持续推理,这是一个用于在Pytorch中实现连续推理网络(CIN)的Python库,Pytorch是一类专门用于在线和批处理处理方案中有效推断的神经网络。我们在实践中为CINS及其实施提供了全面的介绍和指南,并提供了为现代深度学习编写复杂模块的最佳实践和代码示例。可以通过Python软件包索引和\ url {www.github.com/lukashedegaard/continual-inference}轻松下载持续推断。

We present Continual Inference, a Python library for implementing Continual Inference Networks (CINs) in PyTorch, a class of Neural Networks designed specifically for efficient inference in both online and batch processing scenarios. We offer a comprehensive introduction and guide to CINs and their implementation in practice, and provide best-practices and code examples for composing complex modules for modern Deep Learning. Continual Inference is readily downloadable via the Python Package Index and at \url{www.github.com/lukashedegaard/continual-inference}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源