论文标题
球形线性反问题的直接顺序模拟
Direct Sequential Simulation for spherical linear inverse problems
论文作者
论文摘要
我们提出了一种在球形几何形状中获得有效的概率解决方案的方法。我们的球形直接顺序仿真(SDSSIM)框架结合了可能的噪声观测值的信息,这些信息提供了模型上的点信息,或通过线性平均内核与模型相关的信息,以及来自APRIORI训练模型的统计信息。它从不限于高斯的模型参数的边际后验概率分布中产生实现。我们避免限制内置在许多现有的地统计仿真代码中的笛卡尔几何形状,而是与与地球和太空科学问题有关的球形几何形状中的网格工作。 我们使用综合示例证明了我们的方案,表明它产生了与已知解决方案一致的逼真的后验实现,同时将观测值拟合在其不确定性中,并重现模型参数分布和A-Priori培训模型的协方差统计。其次,我们提出了对真实卫星观测的应用,估计了核心掩体边界处的地磁场的后验概率分布。我们的结果重现了核心掩体边界磁场的知名特征,还允许对磁场形态进行概率研究。后验实现中的小规模特征不是由观察结果确定的,而是与从吉迪纳莫模拟训练模型中提取的协方差统计符合。此处介绍的框架代表了迈向球形几何形状中概率反转的更通用方法的一步。
We present a method for obtaining efficient probabilistic solutions to geostatistical and linear inverse problems in spherical geometry. Our Spherical Direct Sequential Simulation (SDSSIM) framework combines information from possibly noisy observations, that provide either point information on the model or are related to the model by a linear averaging kernel, and statistics derived from a-priori training models. It generates realizations from marginal posterior probability distributions of model parameters that are not limited to be Gaussian. We avoid the restriction to Cartesian geometry built into many existing geostatistical simulation codes, and work instead with grids in spherical geometry relevant to problems in Earth and Space sciences. We demonstrate our scheme using a synthetic example, showing that it produces realistic posterior realizations consistent with the known solution while fitting observations within their uncertainty and reproducing the model parameter distribution and covariance statistics of a-priori training models. Secondly, we present an application to real satellite observations, estimating the posterior probability distribution for the geomagnetic field at the core-mantle boundary. Our results reproduce well-known features of the core-mantle boundary magnetic field, and also allow probabilistic investigations of the magnetic field morphology. Small-length scale features in the posterior realizations are not determined by the observations but match the covariance statistics extracted from geodynamo simulation training models. The framework presented here represents a step towards more general approaches to probabilistic inversion in spherical geometry.