论文标题

视听人物含量的深击检测

Audio-Visual Person-of-Interest DeepFake Detection

论文作者

Cozzolino, Davide, Pianese, Alessandro, Nießner, Matthias, Verdoliva, Luisa

论文摘要

面部操纵技术正在迅速发展,并且日常提出了新的方法。这项工作的目的是提出一个深层探测器,该检测器可以应对现实世界中遇到的各种操纵方法和场景。我们的主要见解是,每个人都有合成发生器可能无法再现的特定特征。因此,我们提取视听特征,这些特征表征了一个人的身份,并使用它们来创建感兴趣的人(POI)深击探测器。我们利用一种对比度学习范式来学习对每个身份最具歧视性的移动面和音频段嵌入。结果,当操纵一个人的视频和/或音频时,其在嵌入空间中的表示与真实身份不一致,从而允许可靠的检测。培训专门在真实的面对视频上进行;因此,检测器不取决于任何特定的操纵方法,并且产生最高的概括能力。此外,我们的方法可以检测单模式(仅视频,仅视频)和多模式(Audio-Video)攻击,并且对低质量或损坏的视频具有稳健性。各种数据集的实验证实,我们的方法确保了SOTA性能,尤其是在低质量的视频上。代码可在线上在https://github.com/grip-unina/poi-forensics上公开获得。

Face manipulation technology is advancing very rapidly, and new methods are being proposed day by day. The aim of this work is to propose a deepfake detector that can cope with the wide variety of manipulation methods and scenarios encountered in the real world. Our key insight is that each person has specific characteristics that a synthetic generator likely cannot reproduce. Accordingly, we extract audio-visual features which characterize the identity of a person, and use them to create a person-of-interest (POI) deepfake detector. We leverage a contrastive learning paradigm to learn the moving-face and audio segment embeddings that are most discriminative for each identity. As a result, when the video and/or audio of a person is manipulated, its representation in the embedding space becomes inconsistent with the real identity, allowing reliable detection. Training is carried out exclusively on real talking-face video; thus, the detector does not depend on any specific manipulation method and yields the highest generalization ability. In addition, our method can detect both single-modality (audio-only, video-only) and multi-modality (audio-video) attacks, and is robust to low-quality or corrupted videos. Experiments on a wide variety of datasets confirm that our method ensures a SOTA performance, especially on low quality videos. Code is publicly available on-line at https://github.com/grip-unina/poi-forensics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源