论文标题

可重复的模式和发电机的最大多样性在简化的单词中

Repeatable patterns and the maximum multiplicity of a generator in a reduced word

论文作者

Gaetz, Christian, Gao, Yibo, Jiradilok, Pakawut, Nenashev, Gleb, Postnikov, Alexander

论文摘要

我们研究简单换位$ s_k =(k \:k+1)$的最大乘数$ \ nathcal {m}(k,n)$在简化的单词中,最长的置换$ w_0 = n \:n-1 \:n-1 \:n-1 \:\ cdots \:\ cdots \:2 \:2 \:2 \:1 $,与以前的问题相关,与网络相关的问题,以及k $ k $ k $ k $ k $ k $ - 在根据单调弱分离的路径重新解释问题后,我们表明,对于固定的$ k $和足够大的$ n $,最佳密度是通过精确含义的周期性的路径实现的,因此\ [\ nathcal {m}(m}(k,k,k,k,k,k,n)= c_k n + p_k(n + p_k(n + p_k(n)$ p_ $ p_k $ p_k $ p_k $ c_k $ p_k $和co $ p_k $ p p y&c。实际上,我们表明$ c_k $始终是合理的,并使用“可重复的模式”计算此数量的几个界限和精确值,我们将介绍。

We study the maximum multiplicity $\mathcal{M}(k,n)$ of a simple transposition $s_k=(k \: k+1)$ in a reduced word for the longest permutation $w_0=n \: n-1 \: \cdots \: 2 \: 1$, a problem closely related to much previous work on sorting networks and on the "$k$-set" problem. After reinterpreting the problem in terms of monotone weakly separated paths, we show that, for fixed $k$ and sufficiently large $n$, the optimal density is realized by paths which are periodic in a precise sense, so that \[ \mathcal{M}(k,n)=c_k n + p_k(n) \] for a periodic function $p_k$ and constant $c_k$. In fact we show that $c_k$ is always rational, and compute several bounds and exact values for this quantity with "repeatable patterns", which we introduce.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源