论文标题
统计模型批评变异自动编码器
Statistical Model Criticism of Variational Auto-Encoders
论文作者
论文摘要
我们提出了一个框架,用于在建模手写数字的图像和英语文本语料库的上下文中测试该框架的统计评估,并测试该框架的两个实例。我们对评估的看法是基于统计模型批评的概念,在贝叶斯数据分析中流行,从而根据其重现未知数据生成过程的统计数据的能力来评估统计模型,从中我们可以从中获取样品。 vae不是一个在共享样本空间上学习的,而是两个联合分布,每个分布都利用了一种分解化的选择,这使得可以在两个方向之一(潜在到数据,数据到贴剂)中进行采样。我们从这些分布中评估样本,评估它们(边际)适合观察到的数据和我们对先验的选择,并且我们还通过管道评估样品,该管道将两个分布从数据样本开始连接起来,从数据样本开始,评估它们是否利用并揭示了对从业者有用的变异因素。我们表明,这种方法为模型选择提供了可能性,超出了内在的评估指标,并且比常用统计数据所能提供的更精细的粒度。
We propose a framework for the statistical evaluation of variational auto-encoders (VAEs) and test two instances of this framework in the context of modelling images of handwritten digits and a corpus of English text. Our take on evaluation is based on the idea of statistical model criticism, popular in Bayesian data analysis, whereby a statistical model is evaluated in terms of its ability to reproduce statistics of an unknown data generating process from which we can obtain samples. A VAE learns not one, but two joint distributions over a shared sample space, each exploiting a choice of factorisation that makes sampling tractable in one of two directions (latent-to-data, data-to-latent). We evaluate samples from these distributions, assessing their (marginal) fit to the observed data and our choice of prior, and we also evaluate samples through a pipeline that connects the two distributions starting from a data sample, assessing whether together they exploit and reveal latent factors of variation that are useful to a practitioner. We show that this methodology offers possibilities for model selection qualitatively beyond intrinsic evaluation metrics and at a finer granularity than commonly used statistics can offer.