论文标题
3D $ \ MATHCAL {N} = 4 $理论的扭曲形式主义
Twisted Formalism for 3d $\mathcal{N}=4$ Theories
论文作者
论文摘要
我们描述了拓扑$ a $ a和$ b $曲折的3d $ \ mathcal {n} = 4 $超强的理论,由$ \ mathcal {n} = 4 $ vector多重在某些变形中,作为整体倍率学($ ht $ ht $)的某些变形,利用了这些理论,利用了扭曲的超级领域,并利用了扭曲的超级字体。 $ ht $ -twisted 3D $ \ Mathcal {n} = 2 $理论。从这个角度来看,我们为许多已知的结果重新定位,包括在Riemann表面上的状态空间,风味对称性引起的变形,Costello-Gaiotto的边界VOA以及由Costello-Dimofte-dimofte-dimofte-dimofte-gaiotto-hilburn-hilburn-hilburn-yoo提出的线路运算符类别。在此过程中,我们展示了全体形态扭曲中本地运营商的二级产品与完全拓扑转换中的二级产品有关。
We describe the topological $A$ and $B$ twists of 3d $\mathcal{N}=4$ theories of hypermultiplets gauged by $\mathcal{N}=4$ vector multiplets as certain deformations of the holomorphic-topological ($HT$) twist of those theories, utilizing the twisted superfields of Aganagic-Costello-Vafa-McNamara describing $HT$-twisted 3d $\mathcal{N}=2$ theories. We rederive many known results from this perspective, including state spaces on Riemann surfaces, deformations induced by flavor symmetries, the boundary VOAs of Costello-Gaiotto, and the category of line operators as proposed by Costello-Dimofte-Gaiotto-Hilburn-Yoo. Along the way, we show how the secondary product of local operators in the holomorphic-topological twist is related to the secondary product in the fully topological twist.