论文标题

有效的贝叶斯网络结构通过参数化的本地搜索在拓扑订购中学习

Efficient Bayesian Network Structure Learning via Parameterized Local Search on Topological Orderings

论文作者

Grüttemeier, Niels, Komusiewicz, Christian, Morawietz, Nils

论文摘要

在贝叶斯网络结构学习(BNSL)中,为每个变量提供了一个变量集和母体分数,并旨在计算一个称为贝叶斯网络的DAG,该DAG可能在某些结构约束下最大化了母体得分的总和。即使是非常有限的BNSL特殊情况,在计算上也很难,因此,在实践中,也使用了诸如本地搜索之类的启发式方法。当地搜索算法的一种自然方法是一种攀岩策略,只要可能,它就可以在某些预定义的社区中用更好的解决方案代替给定的BNSL解决方案。我们研究基于订购的本地搜索,其中通过变量的拓扑排序描述了解决方案。我们表明,鉴于这样的拓扑排序,可以计算一个最佳DAG,其订购在倒数范围内的$ r $在次指数fpt时间内;参数$ r $允许在解决方案质量和本地搜索算法的运行时间之间进行平衡。 BNSL可以实现这种运行时间绑定,而无需结构性约束,并且可以通过与每个父集相关联的权重总和表示所有结构约束。我们还引入了一个称为“窗口反转距离”的相关距离,并表明还可以在参数$ r $的次指定fpt时间中解决相应的本地搜索问题。对于可变订购的两个自然修改操作,我们表明,以$ r $为单位的FPT时间的算法不太可能。我们还概述了基于订购的本地搜索的局限性,证明它不能用于网络道德图上的常见结构约束。

In Bayesian Network Structure Learning (BNSL), one is given a variable set and parent scores for each variable and aims to compute a DAG, called Bayesian network, that maximizes the sum of parent scores, possibly under some structural constraints. Even very restricted special cases of BNSL are computationally hard, and, thus, in practice heuristics such as local search are used. A natural approach for a local search algorithm is a hill climbing strategy, where one replaces a given BNSL solution by a better solution within some pre-defined neighborhood as long as this is possible. We study ordering-based local search, where a solution is described via a topological ordering of the variables. We show that given such a topological ordering, one can compute an optimal DAG whose ordering is within inversion distance $r$ in subexponential FPT time; the parameter $r$ allows to balance between solution quality and running time of the local search algorithm. This running time bound can be achieved for BNSL without structural constraints and for all structural constraints that can be expressed via a sum of weights that are associated with each parent set. We also introduce a related distance called `window inversions distance' and show that the corresponding local search problem can also be solved in subexponential FPT time for the parameter $r$. For two further natural modification operations on the variable orderings, we show that algorithms with an FPT time for $r$ are unlikely. We also outline the limits of ordering-based local search by showing that it cannot be used for common structural constraints on the moralized graph of the network.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源