论文标题
pd $ \ rm_ {1-x} $ ag $ \ rm_ {x} $表面合金的第一原理和蒙特卡洛研究。
First principles and Monte Carlo studies of adsorption and desorption properties from Pd$\rm_{1-x}$Ag$\rm_{x}$ surface alloy
论文作者
论文摘要
PD $ \ rm_ {1-x} $ ag $ \ rm_ {x} $($ \ rm {x} = $ 0.25,0.50,0.75)合金的FCC结构被视为本研究中的燃料电池组件。我们研究了它作为燃料电池组成部分的品质,以查看它是否可以用作PT催化剂的替代替代品。我们使用密度功能理论(DFT)来研究H和CO与表面的相互作用,而动力学蒙特卡洛(KMC)研究了表面的H和CO解吸。 PD $ \ rm_ {1-x} $ ag $ \ rm_ {x} $合金的散装模量和平衡晶体结构是使用平面波基集中的$ \&$ a pbe交换相关功能处理计算的。该系统的晶格常数的最佳值是通过拟合到稳定的jellium模型的总能量计算与晶格细胞体积获得的。 PD $ \ rm_ {1-x} $ ag $ \ rm_ {x} $合金的表面能,内聚能和\ \ binding能量分析结构的稳定性。带结构计算揭示了这些合金的电子和光学性能。状态〜(DOS)的密度和预计的状态密度〜(PDOS)显示了特征态用于职业的可用性。在Arrhenius类型解吸率$ \&$ a温度编程中研究了解吸过程。考虑到吸附分子之间的横向相互作用对一阶解吸(分子吸附)$ \&$二阶解吸的影响。在该过程中使用了使用DFT计算的h和co在Pd $ \ rm_3 $ ag〜(111)上的吸附能。结果与文献表明了良好的定性协议。
The FCC structure of Pd$\rm_{1-x}$Ag$\rm_{x}$ ($\rm{x}=$ 0.25, 0.50, 0.75) alloys is considered as a fuel cell component in this study. We have looked into its qualities as a component of a fuel cell to see whether it could be potentially used as an alternative replacement of the Pt catalyst. We used Density Functional Theory (DFT) to study H and CO interaction with the surface, and Kinetic Monte Carlo~(KMC) to study H and CO desorption from the surface. The bulk modulus and equilibrium crystal structures of Pd$\rm_{1-x}$Ag$\rm_{x}$ alloys were computed using the GPAW code within plane wave basis set $\&$ a PBE exchange correlation functional treatment. The best values of a lattice constant for the system are obtained by total energy calculations versus lattice cell volumes as fitted to the stabilized jellium model. Surface energies, cohesive energies, and\ binding energy of Pd$\rm_{1-x}$Ag$\rm_{x}$ alloys were computed to analyze the stability properties of structures. Band structure calculations reveal the electronic and optical properties of these alloys. The density of states~(DOS) and projected density of states~(PDOS) show the availability of the eigenstates for occupation. The desorption process is studied within the Arrhenius type desorption rate $\&$ a temperature programming. The effects of lateral interactions between adsorbed molecules on first order desorption (molecular adsorption) $\&$ second order desorption were taken into account. Adsorption energies of H and CO on Pd$\rm_3$Ag~(111) as calculated using DFT is used in the process. The outcomes show good qualitative agreement with literature.